
The xfig file format for xfig 3.2
Ernst Reissner (rei3ner@arcor.de)

January 1, 1970

Contents
1 Introduction 1

1.1 X-Splines and backwards-compatibility . 2

2 Header 2

3 Objects 3
3.0 Color Pseudo-Object . 4
3.1 Ellipse including Circle . 4
3.2 Polygonal line, Box and included Picture . 5
3.3 Spline . 6
3.4 Text . 7
3.5 Arc . 10
3.6 Compound . 11

4 Parameters 11
4.1 Style and Depth . 11
4.2 Arrow lines . 12
4.3 PointsLine . 12
4.4 Colors and Filling . 13

5 References 15

1 Introduction
This document is created with lualatex or that like with output format pdf. The package
tex4ht is not loaded.

This document describes the grammar of the native file format of the xfig graphic program
version 3.2.9. It is based on xfig.3.2.9/Doc/FORMAT3.2 in xfig 3.2.9 source distribution. The
file extension is .fig and the file-format is human-readable. Note that compared to version
3.2.8a, in version 3.2.9 a comment specifying the encoding has been added. Treating comments
as transparent, the format is unchanged.

If a line contains #, the rest of the line is ignored as regards the Lines starting with # are
comment lines and are ignored. Also, xfig does not insert comments, except the first line as
described in Section 2. On the other hand, if one writes comments, e.g. with an editor, these
are essentially preserved when xfig reads the file and writes it (well, if the first character of a
comment is not a blank, a blank is added, but that is all what is changed). Note that xfig accepts

1

lines with trailing comments, but does not preserve these kinds of comments. Also, comments
with leading blanks are not allowed. So comments occur line wise.

Although the format is human-readable, it is not designed to make it easy to interpret the
content and to obtain an overview. Thus, comments may be valuable aid to give a notion of the
intent behind the various elements contained.

As comments, also empty lines are ignored, but xfig does not preserve them when writing
back the file.

Each xfig-file starts with a header as described in Section 2 followed by a (typically non-empty)
sequence of object descriptions. The header specifies general attributes which apply to the whole
document, whereas the object descriptions refer to individual objects.

For each type of object, there is a separate grammar, described in Section 3 and subsections.
There are elements occurring for more than one type of object. To avoid repetition in the
description, these elements are described separately in Section 4 and referenced from within
Section 3.

Note that the header may be interpreted line wise and also both objects and their parameters
are described as lines. Apart from comment lines, the entries of each line are separated by blanks.
When reading a fig-file, xfig interprets a string of subsequent blanks like one blank, except for
text strings in text objects (see Section 3.4). Consequently, writing back, each such maximal
sequence of blanks is replaced by a single blank. Trailing blanks are not preserved.

Leading blanks do not occur in the header. Lines with leading blanks in the header are ignored.
Thus, e.g. the orientation line “ Landscape” is replaced by “Portrait”, which demands the
default orientation.

Whereas each attribute given in the header is described by a single line, for various object
types a single line is not sufficient. Each object description may start with an indefinite number
of comment lines. The first mandatory line of an object description is called the headline. The
headline does not start with a blank. When reading subsequent lines referring to the same object
xfig accepts a non-empty sequence of blanks, but when writing, such lines start with a single tab
character, in some cases followed by a single blank.

There is a single exception to this rule: Compound objects as described in Section 3.6 which
turns a sequence of objects described by subsequent lines into a unique object described by a
start line and an end line specific for that compound. Both, start line and end line does not allow
a leading blank.

1.1 X-Splines and backwards-compatibility
Splines are always X-splines which allows the user to mix interpolation and approximation points
in a same curve. More precisely, it means that an X-spline curve is neither an interpolated spline
nor an approximated one, it is BOTH (the behavior of each point is controlled by one single
parameter called “shape factor”). For additional information about X-splines, see [BS95].

Caveat: Because spline models of previous versions (quadratic B-splines and Bezier with
hidden points) are no longer supported, curves that are present in version 3.1 and older files are
automatically converted to X-splines. This translation is only an approximation process. It means
that the converted curves are not exactly the same as the original ones. Though the translation
usually provides almost identical curves, some hand-fitting may be needed in some pathological
cases.

2 Header
The very first line is comment line containing the name and version:

2

#FIG 3.2 Produced by xfig version 3.2.9
#encoding: UTF-8

The subsequent non-comment lines of the header are the following (in the order given):
type name Possible values or explanation
string Orientation ‘Landscape’|‘Portrait’
string Justification ‘Center’ or ‘Flush Left’
string Units ‘Metric’ or ‘Inches’
string PaperSize ‘Letter’|‘Legal’|‘Ledger’|‘Tabloid’|

‘A’|‘B’|‘C’|‘D’|‘E’|
‘A4’|‘A3’|‘A2’|‘A1’|‘A0’|‘B5’

float Magnification export and print magnification, %
string MultiplePage ‘Single’ or ‘Multiple’ pages
int TransparentColor color number for transparent color

for GIF export.
-2=None, -1=background,
0–31 for standard colors or
32– for user colors

string [Comment] optional comment
int Resolution coord-system Fig units/inch and coordinate system:

1: origin at lower left corner
(NOT USED)
2: upper left

Fig ‘resolution’ is the resolution of the figure in the file. Xfig will always write the file with a
resolution of 1200ppi so it will scale the figure upon reading it in if its resolution is different from
1200ppi. Pixels are assumed to be square.

Xfig will read the orientation string and change the canvas to match either the Landscape or
Portrait mode of the figure file.

The specification of the units is self-explanatory.
The coordinate-system variable is ignored — the origin is ALWAYS the upper-left corner.
** Coordinates are given in ‘fig_resolution’ units. ** Line thicknesses are given in 80-ths of

an inch (‘display units’). ** dash-lengths/dot-gaps are given in 80-ths of an inch.
https://hackage.haskell.org/package/fig-1.4.0/docs/Graphics-Fig-Syntax.html

Orientation: (‘Landscape’|‘Portrait’)
Justification: (‘Center’|‘FlushLeft’)
Units: (‘Metric’|‘Inches’)
Transparent: Background None TransparentDefault Transparent ColorSpec
CoordinateSystem: LowerLeft UpperLeft (both are integers)
Commented: Comment [String] a
Color: color_number:: Integer color_rgb_values:: String
Documentation
data Fig Source
Fig figHeader:: Header figColors:: [Commented Color] figObjects:: [Commented Object]

3 Objects
The rest of the file contains various objects. An object can be one of six classes (or types) with
according ObjectCode.

3

0 Color pseudo-object (see Section 3.0).

1. Ellipse (see Section 3.1) which is a generalization of circle.

2. Polyline (see Section 3.2) which comprises polygon, box and also included pictures.

3. Spline (see Section 3.3) which may be closed, open approximated, interpolated or an x-spline.

4. Text (see Section 3.4).

5. Arc (see Section 3.5).

6. Compound object (see Section 3.6) which is composed of one or more objects.

In the following elaboration on object formats, every value of fig output are separated by
blank characters or new line (‘\n’). The value of the unused parameters will be -1.

Some fields are described as ‘enumeration type’ or ‘bit vector’; the values which these fields
can take are defined in the header file object.h. The pen_style field is unused. These values may
be defined in some future version of Fig.

3.0 Color Pseudo-Object
Color Pseudo-objects (user-defined colors) define color numbers in terms of rgb-values. This is
used to define arbitrary colors beyond the 32 standard colors. See also Section 4.4. The color
objects must be defined before any other Fig objects.
Headline:
type name Possible values or explanation
int ObjectCode always 0 (see Section 3)
int ColorNumber color number, from 32–543 (512 total)
hex-string RgbValues red, green and blue values (e.g. #330099)
The Headline ist the sole line defining a Color Pseudo-Object.

3.1 Ellipse including Circle
Defines an ellipse in terms of center and vertex of the bounding box or in terms of two diagonal
vertices of the bounding box. Defines also a circle in terms of center and a point on the circle or
in terms of two points on the circle.
The Headline following now is the sole line defining an ellipse.

4

Type name Possible values or explanation
int ObjectCode always 1 (see Section 3)
int SubType 1: ellipse defined by “radiuses”

2: ellipse defined by “diameters”
3: circle defined by radius
4: circle defined by diameter

int LineStyle see Section 4.1
int LineThickness multiples of 1/80 inch
int PenColor see Section 4.4
int FillColor see Section 4.4
int Depth see Section 4.1
int PenStyle -1, not used
int AreaFill see Section 4.4
float StyleVal multiples of 1/80 inch, see Section 4.1
int Direction always 1
float Angle radians, the angle of the x-axis
int center-x, center-y Fig units
int radius-x, radius-y Fig units (same for circles)
int start-x, start-y Fig units; the 1st point entered
int end-x, end-y Fig units; the last point entered

For further explanations on start-x/y and end-x/y:
SubType start-x, start-y end-x, end-y
1 the center some vertex of the BB
2 a vertex of the BB opposite vertex of the BB
3 the center a point on the circle
4 a point on the circle opposite point on the circle
Ellipse
ellipse_common:: Common ellipse_direction:: Integer ellipse_angle:: Double ellipse_cen-

ter_x:: Integer ellipse_center_y:: Integer ellipse_radius_x:: Integer ellipse_radius_y:: Integer
ellipse_start_x:: Integer ellipse_start_y:: Integer ellipse_end_x:: Integer ellipse_end_y:: Inte-
ger

3.2 Polygonal line, Box and included Picture
Defines various kinds of polygonal lines, both open and closed. As special cases also boxes and
arc-boxes, i.e. boxes with rounded vertices. As a special case also a box which serves as bounding
box for a picture. In this case, this polygonal line finally defines the picture itself. See SubType
in the Headline below.
Headline:

5

type name Possible values or explanation
int ObjectCode always 2 (see Section 3)
int SubType 1: polyline (open)

2: box
3: polygon (closed, regular or not)
4: arc-box (box with round vertices)
5: imported-picture bounding-box

int LineStyle see Section 4.1
int LineThickness multiples of 1/80 inch
int PenColor see Section 4.4
int FillColor see Section 4.4
int Depth see Section 4.1
int PenStyle -1, not used
int AreaFill see Section 4.4
float StyleVal multiples of 1/80 inch,

see Section 4.1
int JoinStyle 0: Miter (the default in xfig 2.1 and earlier)

1: Bevel
2: Round

int CapStyle see Section 4.1,
only used for subtype POLYLINE

int Radius radius of arc-boxes as multiples of 1/80 inch
int ForwardArrow 0: off, 1: on
int BackwardArrow 0: off, 1: on
int NPoints number of points in line

After the Headline follows

• the ForwardArrowLine only if ForwardArrow is not 0 and

• the BackwardArrowLine only if BackwardArrow is not 0;

both described in Section 4.2.
Only if SubType in the Headline is 5, representing an included picture, follows a PicLine with

the following form:
type name Possible values or explanation
boolean Orientation 0: normal

1: flipped at diagonal
string File name of picture file to import
The allowed file types are eps/ps, pdf, gif, jpg, pcx, png, ppm, tiff, xmb and xpm.
Then follows a PointsLine with a number of coordinates given by NPoints in the first line.

If the SubType is 5, the PointsLine defines the boundary of the picture and also rotation. The
form of the PointsLine is given in Section 4.3. This is the same as for Polylines described in
Section 3.3.

3.3 Spline
Defines various kinds of splines, open or closed, interpolated or approximated or something in
between as x-spline.

6

Headline:
type name Possible values or explanation
int ObjectCode always 3 (see Section 3)
int SubType 0: opened approximated spline

1: closed approximated spline
2: opened interpolated spline
3: closed interpolated spline
4: opened x-spline
5: closed x-spline

int LineStyle see Section 4.1
int LineThickness multiples of 1/80 inch
int PenColor see Section 4.4
int FillColor see Section 4.4
int Depth see Section 4.1
int PenStyle -1, not used
int AreaFill see Section 4.4
float StyleVal multiples of 1/80 inch, see Section 4.1
int CapStyle Section 4.1, only used for open splines
int ForwardArrow 0: off, 1: on
int BackwardArrow 0: off, 1: on
int NPoints number of control points in spline

After the first line follows

• the ForwardArrowLine only if ForwardArrow is not 0 and

• the BackwardArrowLine only if BackwardArrow is not 0;

both described in Section 4.2.
Then follows a PointsLine with a number of coordinates given by NPoints in the first line.

The form of the PointsLine is given in Section 4.3. This is the same as for Polylines described
in Section 3.2.

Finally, and unlike for Polylines, there comes the ControlPointsLine:
There is one shape factor for each point in the PointsLine, i.e. NPoints shape factors. The

value of this factor must be between

-1 which means that the spline is interpolated at this point and

+1 which means that the spline is approximated at this point.

The spline is always smooth in the neighbourhood of a control point, except when the value of
the factor is 0 for which there is a first-order discontinuity (i.e. angular point).

3.4 Text
A Text object, defines a text element with text, font, font size and many other attributes. Note
that horizontal justification is defined, but not vertical justification.
Headline:

7

type name Possible values or explanation
int ObjectCode always 4 (see Section 3)
int SubType 0: Left justified

1: Center justified
2: Right justified

int PenColor see Section 4.4
int Depth see Section 4.1
int PenStyle -1, not used
int Font see below
float FontSize font size in points
float Angle radians, the angle of the text
int FontFlags three bit vector (see below)
float height Fig units
float length Fig units
int x, y Fig units, coordinate of the origin of the string.

If SubType is 0/1/2, it is the
lower left/center/right corner of the string.

string Text see below
The Headline ist the sole line defining a text object.

The bits of the FontFlags field are defined as follows:

0 Rigid text: text doesn’t scale when scaling compound objects

1. Special text: interpret test as for LATEX-code. If this is set, the following flag affects the
view on the xfig GUI but not external view, e.g. when printing or exporting.

2. PostScript font: interpret Font above as Postscript font (otherwise as LATEX-font) Details
follow below.

3. Hidden text: whether the text is hidden in the xfig GUI. This does not affect the external
view, e.g. printing and export.

The Font field is immaterial, if the Special flag above is set. Otherwise, its meaning depends
on the PostScrpt/LATEX-flag described above:

For FontFlags bit 2 = 0, Font is interpreted as LATEX-font with the following encoding:

0 LATEX Default font

1. Roman

2. Bold

3. Italic

4. Sans Serif

5. Typewriter

For FontFlags bit 2 = 1, Font is interpreted as PostScript-font with the following encoding:

-1 PostScript Default font

0 Times Roman

8

1. Times Italic

2. Times Bold

3. Times Bold Italic

4. AvantGarde Book

5. AvantGarde Book Oblique

6. AvantGarde Demi

7. AvantGarde Demi Oblique

8. Bookman Light

9. Bookman Light Italic

10. Bookman Demi

11. Bookman Demi Italic

12. Courier

13. Courier Oblique

14. Courier Bold

15. Courier Bold Oblique

16. Helvetica

17. Helvetica Oblique

18. Helvetica Bold

19. Helvetica Bold Oblique

20. Helvetica Narrow

21. Helvetica Narrow Oblique

22. Helvetica Narrow Bold

23. Helvetica Narrow Bold Oblique

24. New Century Schoolbook Roman

25. New Century Schoolbook Italic

26. New Century Schoolbook Bold

27. New Century Schoolbook Bold Italic

28. Palatino Roman

29. Palatino Italic

30. Palatino Bold

9

31. Palatino Bold Italic

32. Symbol

33. Zapf Chancery Medium Italic

34. Zapf Dingbats

The Text field above is a sequence of ASCII characters. It starts after a single blank character
which separates the coordinate field x, y from the Text field. This allows to specify texts with
leading blanks. The text field ends before the sequence “\001”; the latter sequence is not part of
the text field. Characters above octal 177 are represented by “\xxx” where xxx is the octal value.
This permits fig files to be edited with 7-bit editors and sent by e-mail without data loss. Note
that the Text field may contain “\n”. To specify a literal backslash write “\\”. The latter is vital
for including LATEX in fig-figures.

ColorSpec: see Section 4.4 Font: Latex LatexFont Ps PsFont
LatexFont: LatexDefault Roman Bold Italic SansSerif Typewriter
FontFlags: hidden:: Bool special:: Bool rigid:: Bool

3.5 Arc
Defines an arc, i.e. a segment of a circle by a start point, an intermediate point and an end point.
Headline:
type name Possible values or explanation
int ObjectCode always 5 (see Section 3)
int SubType 0: closed (pie-wedge)

1: open ended
int LineStyle see Section 4.1
int LineThickness multiples of 1/80 inch
int PenColor see Section 4.4
int FillColor see Section 4.4
int Depth see Section 4.1
int PenStyle -1, not used
int AreaFill see Section 4.4
float StyleVal multiples of 1/80 inch, see Section 4.1
int CapStyle see Section 4.1
int Direction 0: clockwise, 1: counterclockwise
int ForwardArrow 0: off, 1: on
int BackwardArrow 0: off, 1: on
float center-x, center-y center of the arc
int x1, y1 Fig units, the 1st point the user entered
int x2, y2 Fig units, the 2nd point
int x3, y3 Fig units, the last point

After the first line follows

• the ForwardArrowLine only if ForwardArrow is not 0 and

• the BackwardArrowLine only if BackwardArrow is not 0;

both described in Section 4.2.
Arc ArcLine (Maybe Arrow) (Maybe Arrow) Spline SplineLine (Maybe Arrow) (Maybe Arrow)

[(Integer, Integer)] [Double]

10

SplineLine: spline_common:: Common spline_cap_style:: CapStyle
Arrow: arrowType:: ArrowType arrowStyle:: ArrowStyle arrowThickness:: Double ar-

rowWidth:: Double arrowHeight:: Double
ArrowStyle: HollowArrow FilledArrow
ArrowType: Stick Closed Indented Pointed

3.6 Compound
Defines the composition of other objects, which may well be compounds themselves.
Headline:
type name Possible values or explanation
int ObjectCode always 6 (see Section 3)
int UpperRight-corner-x Fig units
int UpperRight-corner-y Fig units
int LowerLeft-corner-x Fig units
int LowerLeft-corner-y Fig units
Subsequent lines of the compound except the last one define a list of objects in the Compound

These objects may well be Compounds themselves. The last line is -6.
CapStyle: see Section 4.1
Common: subType:: Integer lineStyle:: LineStyle lineThickness:: Integer penColor:: ColorSpec

fillColor:: ColorSpec depth:: Integer penStyle:: Integer areaFill:: AreaFill styleVal:: Double
LineStyle: LineStyleDefault Solid Dashed Dotted DashDotted DashDoubleDotted DashTriple-

Dotted
AreaFill: (NoFill|Filled Integer|Pattern Integer)

4 Parameters
4.1 Style and Depth
The CapStyle field is defined FOR LINES, OPEN SPLINES and ARCS only used in ArcLine,
SplineLine, PolylineLine and is encoded as follows:

0 Butt (the default in xfig 2.1 and earlier)

1. Round

2. Projecting

The LineStyle field is encoded as follows:

-1 Default

0 Solid

1. Dashed

2. Dotted

3. Dash-dotted

4. Dash-double-dotted

5. Dash-triple-dotted

11

The StyleVal field is defined as

• the length, in 1/80 inches, of the on/off dashes for dashed lines, and

• the distance between the dots, in 1/80 inches, for dotted lines.

The Depth field is defined as follows:
0 …999 where larger value means object is deeper than (under) objects with smaller depth

4.2 Arrow lines
Forward arrow line (Optional; absent if ForwardArrow is 0):
type name Possible values or explanation
int ArrowType see below
int ArrowStyle see below
float ArrowThickness multiples of 1/80 inch
float ArrowWidth Fig units
float ArrowHeight Fig units
Backward arrow line (Optional; absent if backward-arrow is 0):

type name Possible values or explanation
int ArrowType see below
int ArrowStyle see below
float ArrowThickness multiples of 1/80 inch
float ArrowWidth Fig units
float ArrowHeight Fig units
The ArrowType field is defined for LINES, ARCS and OPEN SPLINES only as follows:

0 Stick-type (the default in xfig 2.1 and earlier)

1. Closed triangle:

2. Closed with ‘indented’ butt:

3. Closed with ‘pointed’ butt:

The ArrowStyle field is defined for LINES, ARCS and OPEN SPLINES only as follows:

0 Hollow (actually filled with white)

1. Filled with PenColor defined in Section 4.4

4.3 PointsLine
The form of the PointsLine is as follows:
type name Possible values or explanation
int x1, y1 Fig units
int x2, y2 Fig units
...

...
...

int xnpoints ynpoints this will be the same as the 1st point
if the described line is closed
and in particular if it is the outline of a picture

12

4.4 Colors and Filling
Both PenColor and FillColor are encoded as follows:

-1 Default

0 Black

1. Blue

2. Green

3. Cyan

4. Red

5. Magenta

6. Yellow

7. White

8–11 four shades of blue (dark to lighter)

12–14 three shades of green (dark to lighter)

15–17 three shades of cyan (dark to lighter)

18–20 three shades of red (dark to lighter)

21–23 three shades of magenta (dark to lighter)

24–26 three shades of brown (dark to lighter)

27–30 four shades of pink (dark to lighter)

31 Gold

32–543 (512 total) are user colors and are defined in color pseudo-objects described in Section 3.0.
Only those indices may be used which are previously defined in some color pseudo-object.

The field AreaFill is defined depending on the value of FillColor (which is defined for all
kinds of objects for which AreaFill is defined).

For all FillColors except Black or Default and White, the AreaFill pattern is defined as
follows:

-1 not filled

0 black

1–19 ‘shades’ of the FillColor, from darker to lighter. A shade is defined as the color mixed
with black

20 full saturation of the color

21–39 ‘tints’ of the color from the color to white. A tint is defined as the color mixed with white

40 white

13

41 30 degree left diagonal pattern

42 30 degree right diagonal pattern

43 30 degree crosshatch

44 45 degree left diagonal pattern

45 45 degree right diagonal pattern

46 45 degree crosshatch

47 bricks

48 circles

49 horizontal lines

50 vertical lines

51 crosshatch

52 fish scales

53 small fish scales

54 octagons

55 horizontal ‘tire treads’

56 vertical ‘tire treads’

For FillColors Black and Default, there are the following deviations:

-1 not filled

0 white

1–19 ‘shades’ of gray, from lighter to darker.

20 (full saturation of) black

21–40 not used.

If the FillColor is White there are the following deviations from standard colors:

-1 not filled

0 black

1–19 ‘shades’ of gray, from darker to lighter.

20 (full saturation of) white

21–40 not used.

used in Text and Common,
ColorSpec: ColorSpecDefault Black Blue Green Cyan Red Magenta Yellow White Blue4 Blue3

Blue2 LtBlue Green4 Green3 Green2 Cyan4 Cyan3 Cyan2 Red4 Red3 Red2 Magenta4 Magenta3
Magenta2 Brown4 Brown3 Brown2 Pink4 Pink3 Pink2 Pink Gold UserDefined Integer

14

5 References
[BS95] Carole Blanc and Christophe Schlick. X-splines: A spline model designed for the end-user.

Proceedings of SIGGRAPH, pages 377–386, 8 1995. LaBRI: Laboratoire Bordelais de
Recherche en Informatique (Université Bordeaux I and Centre National de la Recherche
Scientifique).

15

	Introduction
	X-Splines and backwards-compatibility

	Header
	Objects
	Color Pseudo-Object
	Ellipse including Circle
	Polygonal line, Box and included Picture
	Spline
	Text
	Arc
	Compound

	Parameters
	Style and Depth
	Arrow lines
	PointsLine
	Colors and Filling

	References

