Files, Errors and Warnings of pythontex (.18

Ernst Reissner (rei3ner@arcor.de)

September 5, 2024

Contents

|[List of Figures|
[Cist of Tables

|List of Listings|

(1 _Introduction|

[2_The converter pythontex|
[21 The Input File xxx.pytxcode]
22 The Output Files|
[2.37 Errors and Warnings at standard/error output]

2.4 Tailure codesl
[3_The converter depythontex|

1 e Input File xxx.dpytx|o oo oo
[322 The Output Files|
3.3 Errors and Warnings at standard/error output{

[4_References|

List of Figures

(L Conversion of a pytxcode-file using pythontex|
P Conversion of a depytx-file using depythontex|

List of Tables

[L Fatal errors with number code of pythontex|.
[2 Non-fatal errors of pythontex |
3 StdErr (non-fatal) errors of pythontex |
4 Warnings of pythontex |
[Notices of pythontex | v v vt i

co Ut Ut w W

co Co Co co QO

~N SOyt

List of Listings

(L The settings section of pythontexInQut.pytxcode| 4
R The sole code section of pythontexInOut.pytxcode| 4

1 Introduction

This document is created with lualatex or that like with output format PDF. The package
tex4ht is not loaded.

The pythontex package together with the auxiliary program with the same name pythontex,
allows including code, e.g. in Python into a I¥TEX document. This document describes the
input/output behavior of the auxiliary program pythontex, version 0.18 which includes all files
read and written and uses pythontex. For example, 1+1=2 has been computed by python.

Interaction of pythontex with a I¥TEX engine like lualatex is comparable to that of other
auxiliary programs like makeindex: A latex package makes the ITEX engine extract information
for the auxiliary program into a separate file or more. Then the auxiliary program is run which
creates further files which the IATEX engine reads in a second run.

Both, the package pythontex and the auxiliary programs pythontex and depythontex, are
described in [Poo2l]. Moreover, there is an introduction [Poo] and a gallery [Pool7]. For
background on the intentions of package pythontex, consult [Pool5].

The integration of pythontex into the latex maven plugin in this project is given in [Reil,
Section 5.5.

Another source of knowledge on pythontex is the source code hosted at https://github.com
/gpoore/pythontex. Note that pythontex is written in python and we only take into account
the code for python3.

At least the following properties are special to package pythontex:

e The number of files pythontex may create is variable and so by default they are put into a
subfolder.

e The output files generated are highly configurable.

e There is more than one auxiliary program tied to the package, besides pythontex also
depythontex.

e The errors and warnings of a pythontex run and of a depythontex run are not written
into a log file.

In [Rei], Section 5.5 a wrapper for pythontex is suggested writing the errors and warnings
normally coming at standard output or error output into a log file xxx.plg. Nevertheless,
currently no log file is written.

The package pythontex is highly configurable, more than this software allows. Thus, also in
this document we assume that neither \setpythontexoutputdir setting the output directory nor
\setpythontexworkingdir setting the working directory are used, because this software assumes
the default that the working directory is the directory containing the IATEX main file xxx.tex
and the output directory is in the working directory and its name is pythontex-files-xxx.

Note that we assume python 3.x is installed only.

https://github.com/gpoore/pythontex
https://github.com/gpoore/pythontex

2 The converter pythontex

As already pointed out in the introduction, we restrict ourselves to the default case in which
pythontex writes output files only in folder pythontex-files-xxx.
Under these assumptions, Figure |1l shows the input and output files of pythontex.

1

XXX .pytxmcr

XXX . pytxcode_//

4

XXX .pytxpyg

xxx.pkl

XXX.err . | Xxx.out :

pythontexW only . py_se_default_1..y.py

#! /bin/bash ' N
bash >-3.0 py_se_default_1..y.stdout

pythontex $ |& tee ${!#}.plg

xxx.plg folder pythontex-files-xxx

Figure 1: Conversion of a pytxcode-file using pythontex

The input file is described in Section [2.1]in full detail. Section [2.2]is devoted to the output
files of pythontex. Note that unlike the wrapper pythontexW, the original pythontex just prints
errors and warnings. These are all collected in Section Finally, Section [2.4]is on the failure
codes.

2.1 The Input File xxx.pytxcode

If a file xxx.tex loading package pythontex is processed, as is the case for this document, a file
xxx.pytxcode is created, whether there is python code within xxx.tex or not. This file contains
a line

=>PYTHONTEX : SETTINGS#

and below that are specified the package options in the form given by Listing

There is one key which does not refer to a package option: it is version which refers to the
version of the pythontex package which is also the expected version of pythontex. If the versions
deviate, running pythontex emits the fatal error with line number 491 in Table

Interesting: runall is a package option, but it is not a valid key in xxx.pytxcode: instead,
runall=true/false is converted into rerun=always/default. Note that pythontex is not able
to process the key runall but emits a warning with line number 484 given in Table [4] This
document is compiled with option runall=false.

For each python code in xxx.tex, there is a separate code section in xxx.pytxcode. The
code sections come in proper order and precede the settings section. This document has a single
section with python code, right at the beginning of the introduction. The code is

\pys [sname] {1+1=!{1+1}}

=PYTHONIEX: SETTINGS#
version=0.18
outputdir=pythontex—files —pythontexInOut
workingdir=.
workingdirset=false
gobble=none
rerun=default
hashdependencies=default
makestderr=false
stderrfilename=full
keeptemps=all
pyfuture=default
pyconfuture=none
pygments=false
pygglobal=:GLOBAL| |
fvextfile=55
pyconbanner=none
pyconfilename=stdin
depythontex=true

Listing 1: The settings section of pythontexInQOut.pytxcode

=PYTHONTEX#py#snamettd e fa ul tHO0MsHHHHHIDHE
14+1=1{1+1}

Listing 2: The sole code section of pythontexInQOut.pytxcode

Listing [2 shows the according section in xxx.pytxcode. As always there is a headline starting
with =>PYTHONTEX then follow, separated by # symbols

the family, i.e. the interpreter, here py representing python, coming from the command
\pys; accordingly for environments,

the session, here sname, which is the optional parameter of the command,

next suspected the restart identifier, seemingly always default

the command, here s, also determined by the command \pys,

the context which is empty,

arguments which are empty here,

the number of the instance, which runs from 0 to the number of commands minus one

and the line number which is the line in the IKTEX file, where the command or the according
environment starts.

If running pythontex on the job xxx, we obtain for this manual with a trailing empty line.

This is PythonTeX 0.18

PythonTeX: manuallMP - O error(s), O warning(s)

The folder pythontex-files-manuallLMP is created but may be empty because there is no

code.

2.2 The Output Files

Figure [1f shows that the output files of pythontex are all in folder pythontex-files-xxx.
Temporary files in dotted boxes, so these can be seen only if the pythontex run is interrupted,
e.g. by failure. The other files are called final. The Figure also indicates, that the wrapper
pythontexW writes a log file in addition.

Among the final files, there is xxx.pytxmcr which starts something like

%Last time of file creation: 1656851667.5282867

and contains processed pygments code according to [Poo21], page 107.
Although indicates the time of the last pythontex wrote the file, seemingly, pythontex does
not update if it is unchanged. So it does not indicate the last run.

2.3 Errors and Warnings at standard/error output

| Line No * Message RC |
219 — Invalid --interpreter argument 2
246 error You have launched PythonTeX using pythontex2/3.py directly. 2
271 error You have launched PythonTeX using pythontex2/3.py directly. 2
292 error Code file xxx.pytxcode does not exist. Run LaTeX .. 1
327 error Directory naming collision between the following files:.. 1
362 error Code file xxx.pytxcode does not exist. Run ERX .. 1
3710 — The .pytxcode file appears to have an outdated format .. 1

Run LaTeX to make sure the file is current

406 error Unable to parse package option fvextfile.

491 error The version of the PythonTeX scripts does not match
the last code saved by the document ..

2864 — — 1

Table 1: Fatal errors with number code of pythontex

— =

Fatal errors are understood to be those which exit via sys.exit immediately with an error
code other than 0 or with a message. Thus, at most one fatal error can occur. This document
doesn’t treat fatal errors with error message. Table [l| gives an overview of fatal errors with
number code. It gives the line number of the according sys.exit command, whether the message
is preceded by a line * PythonTeX error, followed by an abbreviation of the proper message
and finally the error code. Of course, just the error code indicates that it is an error, even if the
message does not start with * PythonTeX error, and for the cases with lines 219 and 370, the
missing indication in the message seems to be just a bug or a weakness.

A special case is in line 2864: pythontex has a counter for non-fatal errors and another
counter for warnings. Error code 1 is returned also, if at least one non-fatal error was counted
and if command line option --error-exit-code is set to true, which is the default according
to [Poo21], Section 3.2. Fatal errors cannot be suppressed via that command line option. Strictly
speaking, the case of line 2864 is a fatal error itself, but it shall not be treated as such, and it is
appropriate that it has no message, just an error code if configured so.

In contrast, non-fatal errors, are errors which do not immediately cause pythontex to exit.
Have a look at the messages collected in Table 2} It is structured similar to Table [I] except that
the exit code (which non-fatal errors don’t have) is replaced by the line number of the increment
of the error counter, except in one case, where there is no increment at all. In this case, the line
number, which is 2422, refers to the error message. The author considers this a bug in pythontex.

Observe that all these errors have messages starting with * PythonTeX error. All entries in
Table [2| refer to non-fatal errors: They are errors because of either the message or the increment
of the error count. Also, they are non-fatal because they don’t lead to an immediate exit with
failure code.

‘ Line No * Message inc err/warn ‘

655 error Cannot find dependency ...
1359 error Currently, non-Python consoles are not supported
1605 error Missing output file for ..
1611 error Running code for Julia console failed
1696 error Cannot find dependency. It belongs to ..
1765 error Missing stderr file for ..
1960 error Line number xxx could not be synced with the document ...
2343 error An error occurred but no error messages were identified. ...
2422 error Could not find external file xxx The file was not pygmentized
Table 2: Non-fatal errors of pythontex

o o o o 0o 0 o @

Table |3| collects messages starting with * PythonTeX stderr indicating that they are handed
over from included code. They are treated either as errors or warnings, increasing exactly one of
the according counters, which is indicated by the last column of the table. Note that the message
gives no indication on whether it is counted as an error or as a warning: One and the same
message form can be both. Distinction is just by the counter incremented. Since there are at
least two lines of code where the increments are performed, at least one for an error and one for a
warning, the line number given in the table refers to the code where the message * PythonTeX
stderr is printed.

Without the irregularity given in Table |2 line with number 2422, a non-fatal error is just
tied with messages for which the error count is incremented. The irregularity can be included by
specifying that a non-fatal error is if the error counter is incremented or the message starts with
* PythonTeX error.

| Line No * Message inc err/warn |
1899 stderr ..on line ..in “..” e/w
1899 stderr ..on line .. e/w
2061 stderr ..near line ..in “..” e/w
2063 stderr ..near line .. e/w
2164 stderr ..near line ..in “..” e/w
2166 stderr ..near line .. e/w
2654 stderr ..in console startup code e/w
2677 stderr ..near line ..in custom code for console e/w
2679 stderr ..near line ..in console code e/w

Table 3: StdErr (non-fatal) errors of pythontex

Table 4] contains proper warnings always incrementing the warnings counter. So definition of
warnings is simple: A warning is what increases the warning counter.

Line No * Message inc warn
340 warning Potential directory naming collision ... yes
413 warning Invalid value for package option fvextfile yes

484 warning Unknown option .. yes
685 warning Session xxx has rerun=never yes
But its code or dependencies have been modified
1446 warning The following have dependencies that have been modified yes
1737 warning Custom code for xxx attempted to print or write to stdout yes
Table 4: Warnings of pythontex

Finally, Table [5| states notices, seemingly mere info not directly tied to an error or a warning.
The according message is identified by its setart * PythonTeX stderr.

Line Number * Message

2276 notice Line number ..could not be synced with the document
2336 mnotice x message(s) could not be classified
Interpreted as y, based on the return code(s)
Table 5: Notices of pythontex

It is difficult to analyze the code around line 2276, but it seems as if synchronization of line
numbers occurs only in conjunction with non-fatal errors and warnings, because synchronization
is needed only to locate those in code text.

Analyzing the code preceding line 2336 shows that the according notice comes up only if a
stderr message could not be identified as a non-fatal error or a warning, so both counters are
increased by the number of events which could not be classified. So again, an error or a warning
is indicated by a nonzero counter, but one of the counters may be too high.

So also notices are recognized via error count and warning count.

At the end of the log, which is currently written to stdio, pythontex summarizes the (non-fatal)
errors and warnings which occurred. So besides the proper messages, there is a summary. It
takes one of the following forms: Either

PythonTeX:._.pythontexInOut
ceoe—o01d:eoeoo Ocerror(s), O.warning(s)
cewo—_Current:..O_error(s),_O.warning(s)

or

PythonTeX:__pythontexInOut.-_0O_error(s),._O_warning(s)

where of course pythontexInOut is to be replaced by the jobname and the number of errors and
warnings may be different from 0.
The pattern to match at least one non-fatal error in java style is

(PythonTeX: . ..+.-|oooo—oCurrent:.) . [1-9] [0-9]*_error\\ (s\\),.[0-9]+_warning\\ (s\\)

The last thing to do is to take into account the irregularity of the non-fatal error in Table [2| line
number 2422, by adding the alternative * PythonTeX error to the regular expression, which
detects nothing additional but this case. So we arrive at the following pattern, where the dots
must be replaced by the above pattern

*_PythonTeX_error]| ...
For warnings, we can use the same but do not need the bugfix. The result is

(PythonTeX: ..+.~|.ceo—oCurrent:.) [0-9]+_error\\(s\\),.[1-9] [0-9] *_warning\\ (s\\)

2.4 Failure codes

3 The converter depythontex

XXX.tex xxx.depytx.tex

depythontex --overwgite -o xxx.depytx.tex

XXX .depyt:

depythontexW o

#! /bin/bash \
basd>=3.0 xxx.dplg

depythontex $ |& tee ${!#}.dplg

folder pythontex-files—-xxx

Figure 2: Conversion of a depytx-file using depythontex

3.1 The Input File xxx.dpytx
3.2 The Output Files
3.3 Errors and Warnings at standard/error output

3.4 Failure codes

4 References

[Poo] Geoffrey M. Poore. PythonTEX Quick-start. https://github.com/gpoore/pythonte
x/blob/master/pythontex quickstart/pythontex quickstart.pdf.

[Pool5] Geoffrey M. Poore. PythonTeX: reproducible documents with LaTeX, Python, and more.
Computational Science & Discovery, 8(1), 7 2015. doi:10.1088/1749-4699/8/1/014010.

[Pool7] Geoffrey M. Poore. PythonTEX Gallery. https://github.com/gpoore/pythontex/bl
ob/master/pythontex gallery/pythontex gallery.pdf, 7 2017.

[Poo21] Geoffrey M. Poore. The pythontex package. gpoore at gmail.com, github.com/gpoore/
pythontex, v1.8 edition, 6 2021.

[Rei] E. Reiflner. Manual for the latex-maven-plugin and for an according ant-task, Version
X.Y. The current version is vailable at http://www.simuline.eu/LatexMavenPlugin
/manuallMP.pdf.

https://github.com/gpoore/pythontex/blob/master/pythontex_quickstart/pythontex_quickstart.pdf
https://github.com/gpoore/pythontex/blob/master/pythontex_quickstart/pythontex_quickstart.pdf
https://github.com/gpoore/pythontex/blob/master/pythontex_gallery/pythontex_gallery.pdf
https://github.com/gpoore/pythontex/blob/master/pythontex_gallery/pythontex_gallery.pdf
github.com/gpoore/pythontex
github.com/gpoore/pythontex
http://www.simuline.eu/LatexMavenPlugin/manualLMP.pdf
http://www.simuline.eu/LatexMavenPlugin/manualLMP.pdf

	List of Figures
	List of Tables
	List of Listings
	Introduction
	The converter pythontex
	The Input File xxx.pytxcode
	The Output Files
	Errors and Warnings at standard/error output
	Failure codes

	The converter depythontex
	The Input File xxx.dpytx
	The Output Files
	Errors and Warnings at standard/error output
	Failure codes

	References

