
Special and common aspects of pdf/dvi/xdvi generators

Ernst Reissner (rei3ner@arcor.de)

2024-9-20T21:08

Contents
List of Tables 1

List of Listings 2

1 Introduction 2

2 The options for TEX Live 2

3 The options for MiKTeX 4

4 Reproducibility and security for PDF documents created 6
4.1 The tool chains . 7
4.2 Dates, times and time zones . 7

4.2.1 Date/time formats and time zones . 7
4.2.2 Date, time and time zones in PDF files created from LATEX files 9

4.3 Metadata in the PDF trailer and info dictionary 11
4.4 Reproducibility . 13
4.5 Suppressing and overwriting meta info in an engine specific way 14
4.6 Security and Stability of Reproducibility . 14
4.7 Miscellaneous . 15

4.7.1 The command \DocumentMetadata . 15
4.7.2 Manipulating the trailer identifier . 16

5 To be clarified 16

6 References 16

List of Tables
1 LATEX engines and the version this document refers to 2
2 Options of TEX engines in TEX Live . 4
3 Options of TEX engines in MiKTeX . 6
4 Keys of DID and replacement by XMP . 12

1

List of Listings
1 Definition of \printdate . 10

1 Introduction
This document is created with lualatex or that like with output format PDF. The package
tex4ht is not loaded.

This document is about features the three LATEX engines, pdflatex, lualatex and xelatex
have in common and discusses also aspects under which they are specific. These programs are
just underlying TEX engines preloading the LATEX format. The names of the underlying engines
just drop the inner sylable “la”. For pdftex there is a user manual [THHB24], for luatex there
is a reference manual [HHHS24] and for xetex a reference guide [RHB24].

The first aspect we cover are the options (among those to display the version). It turns
out, that the options are specific for the distribution. Apart from TEX Live, there is a second
important distribution, MiKTeX, which should also be treated.

We treat the options for TEX Live in Section 2 and those for MiKTeX in Section 3.
The second subject is privacy as part of security and reproducible builds of documents, e.g.

for tests. The focus is here on PDF files and comprises besids visible data also metadata. The
results of our research is collected in Section 4.

2 The options for TEX Live
Note that in fact we use a variant of luatex, called luahbtex.

This document is valid for versions of the underlying LATEX engine as given in Table 1.
Moreover, our research refers to a specific distribution, TEX Live.

LATEX engine version
pdflatex pdfTeX 3.141592653-2.6-1.40.24
xelatex XeTeX 3.141592653-2.6-0.999994
lualatex LuaHBTeX, Version 1.15.0

Table 1: LATEX engines and the version this document refers to

We start with a synopsis of the options. Table 2 shows options of the LATEX engines under
consideration. Note that in contrast to the other LATEX engines, lualatex defines options starting
with -- but it can also process the options if given with a single dash also. Conversely, LATEX
engines other than lualatex can also deal with options starting with single dash. Options
unknown to a LATEX engine never result in an error or even a warning; instead just an info message
is displayed. This allows to create a configuration which works for all LATEX engines.

In Table 2 column “included”, each LATEX engine is represented by the starting letter of its
name, so for each option it is known which LATEX engines know about it and conversely, which
options each LATEX engine has.

The table allows furnishing configurations working for all LATEX engines. Some options are
common to all LATEX engines

2

option included explanation
(-)-cnf-line=STRING p x l parse STRING as a configuration file line
--credits - - l Display credits and exit.
--debug-format - - l enable format debugging
(-)-draftmode p - l switch on draft mode (generates no output PDF)
-enc p - - Enable encTeX extensions such as \mubyte
-etex p x - enable e-TeX extensions
(-)-[no-]file-line-error p x l disable/enable file:line:error style messages
--[no-]file-line-error-style - - l aliases of --[no-]file-line-error
-fmt=FMTNAME p x l use FMTNAME instead of program name or a %& line1

(-)-ini p x l for dumping formats
-ipc p - - send DVI output to a socket

as well as the usual output file
-ipc-start p - - as -ipc, and also start the server at the other end
(-)-halt-on-error p x l stop processing at the first error
(-)-help p x l display this help and exit
(-)-version p x l output version information and exit
-8bit p x - make all characters printable by default2

(-)-interaction=STRING p x l set interaction mode
(STRING=batchmode/nonstopmode/
scrollmode/errorstopmode)

(-)-jobname=STRING p x l set the job name to STRING
(-)-kpathsea-debug=NUMBER p x l set path searching debugging flags

according to the bits of NUMBER
--lua=FILE - - l Load and execute a lua initialization script.
--luaonly - - l run a lua file, then exit
--luaconly - - l byte-compile a lua file, then exit
--luahashchars - - l the bits used by current Lua interpreter for strings hashing
(-)-[no-]mktex=FMT p x l disable/enable mktexFMT generation3

-mltex p x - enable MLTeX extensions such as \charsubdef
-no-pdf - x - generate XDV (extended DVI) output rather than PDF
--nosocket - - l Disable the Lua socket library.
(-)-output-comment=STRING p x l use STRING for DVI file comment instead of date

(no effect for PDF)4

(-)-output-directory=DIR p x l use existing DIR as the directory to write files in
(-)-output-format=FORMAT p - l use FORMAT for job output; FORMAT is ‘dvi’ or ‘pdf’5
-output-driver=CMD - x - use CMD as the XDV-to-PDF driver instead of xdvipdfmx
-papersize=STRING - x - set PDF media size to STRING
-[no-]parse-first-line p x - disable/enable parsing of first line of input file
(-)-progname=STRING p x l set program (and fmt) name to STRING6

(-)-recorder p x l enable filename recorder
--safer - - l Disable easily exploitable Lua commands.
(-)-[no-]shell-escape p x l disable/enable \write18SHELL COMMAND7

(-)-shell-restricted p x l enable restricted \write188

-src-specials p x - insert source specials into the DVI file
-src-specials=WHERE p x - insert source specials in certain places of

the DVI/XDV9 file.
(-)-synctex=NUMBER p x l generate SyncTeX data for previewers10

-translate-file=TCXNAME p use the TCX file TCXNAME11

1in fact for lualatex the explanation deviates a bit: --fmt=FORMAT: load the format file FORMAT
2for xelatex: don’t use ^^X sequences
3(FMT=tex/tfm/pk) for pdflatex; else (FMT=tex/tfm)
4For xelatex it is XDV instead of DVI and the remark (no effect for PDF) is missing
5xelatex offers option -no-pdf instead.
6lualatex does not mention (and fmt)
7For lualatex the explanation is disable/enable system commands
8For lualatex the explanation is restrict system commands to a list of commands given in texmf.cnf
9DVI for pdflatex; XDV for xelatex

10Explanation differs for lualatex
11TCX means TEX character translation

3

--utc l Init time to UTC12

Table 2: Options of TEX engines in TEX Live

pdflatex:

Usage: pdftex [OPTION]... [TEXNAME[.tex]] [COMMANDS]
or: pdftex [OPTION]... \FIRST-LINE
or: pdftex [OPTION]... &FMT ARGS

Run pdfTeX on TEXNAME, usually creating TEXNAME.pdf.
Any remaining COMMANDS are processed as pdfTeX input, after TEXNAME is read.
If the first line of TEXNAME is %&FMT, and FMT is an existing .fmt file,
use it. Else use `NAME.fmt', where NAME is the program invocation name,
most commonly `pdftex'.

Alternatively, if the first non-option argument begins with a backslash,
interpret all non-option arguments as a line of pdfTeX input.

Alternatively, if the first non-option argument begins with a &, the
next word is taken as the FMT to read, overriding all else. Any
remaining arguments are processed as above.

If no arguments or options are specified, prompt for input.

3 The options for MiKTeX
Since at the time of this writing, the author has no MiKTeX at hand, the results for MiKTeX are
based on documentation, rather than experimentation. The three engines are a bit different, also
in their names.

Well this section is preliminary only. It turned out that Section 2 is valid only for distribution
TEX Live. So in this section we venture to find out the options for the other big distribution,
MiKTeX. We shall also investigate whether there are further distributions.

Whereas the description [KB23] seems not to mention the options explicitly, the MiKTeX
manual [Sch22] describes each program in Section II, 6, in particular also the LATEX engines. This
is the source of the following tables.

The first observation is that, for MiKTeX all options start with two dashes, whereas for
TEX Live this is the case only for luatex. One has to clarify, whether the maven latex plugin
under consideration really works for MiKTeX.

option included explanation
--alias=name p x l Pretend to be program name, …13

--aux-directory=dir p x l Set dir as the directory to write auxiliary files to.
--buf-size=n p x - Set the the maximum number of characters …
--c-style-errors p x l Change the way, error messages are printed.
--credits - - l Display credits and exit14.
--disable-8bit-chars p x - Make only 7-bit characters printable.
--disable/enable-installer p x l Disable/Enable automatic installation of packages.

12Coordinated Universal Time, successor of Greenwich Mean Time (GMT)
13Using this option is equivalent to copying the program file to name and invoking name.
14The same as for TEX Live.

4

--disable-write18 p x l Disable the \write18{command} construct.
--enable-write18 p x l Fully enable the \write18{command} construct15.
--restrict-write18 p x l Partially enable the \write18command construct.
--debug-format - - l Enable format debugging16.
--[dont-]parse-first-line p x - [Dont p|P]arse first line of input file

under definite conditions17

--draftmode p - l switch on draft mode (generates no output PDF)18

--enable-8bit-chars p x - Make all characters printable.
--enable-enctex p - - Enable encTeX extensions such as \mubyte19.
--enable-etex p x - Enable eTeX extensions.
--enable-installer p x l Enable automatic installation of packages.
--enable-mltex p x - Enable MLTeX extensions such as \charsubdef.
--error-line=n p x - Set the width of context lines on …error messages.
--extra-mem-bot=n p x - Set the extra size … for large data structures …
--extra-mem-top=n p x - Set the extra size (in memory words) for chars, tokens, ….
--font-max=n p x - Set the maximum internal font number.
--font-mem-size=n p x - Set the size, in TeX memory words, of the font memory.
--half-error-line=n p x - Set the width of first lines of contexts

in terminal error messages.
--halt-on-error p x l Quit after the first error.
--hash-extra=n p x - Set the extra space for the hash table of control sequences …
--help p x l Give help and exitt20..
--hhelp p x - manual page in an HTML Help window21

--include-directory=dir p x l Add the directory dir to [those]
to be searched for input files.

--initialize p x l Become the INI variant of the program.
--interaction=mode p x l Set the interaction mode (mode=batchmode/nonstopmode/

scrollmode/errorstopmode).
--job-name=name p x l Set the name of the job (\jobname).
--job-time=file p x - Set the time-stamp of all output files

equal to file’s time-stamp.
--lua=FILE - - l load and execute a lua initialization script22.
--luaonly - - l Start LuaTeX as a Lua interpreter23.
--luaconly - - l byte-compile a lua file, then exit24.
--luahashchars - - l the bits used by current Lua interpreter for strings hashing
--main-memory=n p x - Change the total size … of the main memory array.
--max-in-open=n p x - Set the maximum number of input files …
--max-print-line=n p x - Set the width of longest text lines output.
--max-strings=n p x - Set the maximum number of strings.
--[no-]mktex=fmt - - l Enable/Disable fmt generation,

where fmt must be either tex or tfm.
--nest-size=n p x - Set the maximum number of semantic levels

simultaneously active.
--no-c-style-errors p x l Don’t change the way, error messages are printed.
--no-pdf - x - generate XDV (extended DVI) output rather than PDF
--nosocket - - l Disable the Lua socket library.
--output-comment=string - - l Use string for DVI file comment instead of date.
--output-directory=dir p x l Write output files in dir25.
--output-driver=CMD - x - use CMD as the XDV-to-PDF driver instead of xdvipdfmx

15Corresponds roughly to (-)-shell-escape in TEX Live.
16The same as for TEX Live.
17Similar for TEX Live. Note that there is also a converse option.
18Some differences in formulation between the LATEX engines and also between distributions
19Corresponds with -enc in TEX Live.
20The same as for TEX Live.
21This option is only available on Windows systems.
22The same as for TEX Live.
23Could be the same as for TEX Live.
24Could be the same as for TEX Live.
25Similar as for TEX Live.

5

--output-format=format p - l Use format for job output (one of: dvi, pdf)26.
--papersize=STRING - x - set PDF media size to STRING
--param-size=n p x - Set the the maximum number

of simultaneous macro parameters.
--pool-free=n p x - Set the minimum pool space left after loading the format.
--pool-size=n p x - Set the maximum number of characters in strings, …
--quiet p x - Suppress all output, except errors.
--record-package-usages=file p x - Record all package usages and write them into file.
--recorder p x l Enable the file name recorder27.
--safer - - l Disable easily exploitable Lua commands28.
--save-size=n p x - Set the the amount of space for saving values

outside of current group.
--src-specials p x - Embed source file information in the DVI file29.
--stack-size=n p x - Set the maximum number of simultaneous input sources.
--string-vacancies=n p x - Set the minimum number of characters …
--synctex=n p x l Generate SyncTeX data for previewers30

--tcx=tcxname p - - Use the tcxname translation table …
--time-statistics p x - Show processing time statistics.
--trace[=tracestreams] p x - Enable trace messages.
--trie-size=n p x - Set the amount of space for hyphenation patterns.
--undump=name p x l Use name as the name of the format to be used, …
--utc - - l Init time to UTC31.
--version p x l Show version information and exit32.

Table 3: Options of TEX engines in MiKTeX

Strange, there are --enable-etex and --enable-mltex but no way to disable. Maybe disable
is the default.

miktex-pdftex [option...] [[file] | [\command...]]

miktex-luatex [option...] [[command...] | [file]]

The following options are ignored:

--8bit, --etex, --parse-first-line, --no-parse-first-line
These are always on.

--default-translate-file=tcxname, --translate-file=tcxname
These are always off.

miktex-xetex [option...] [[file] | [\command...]]

4 Reproducibility and security for PDF documents created
Of course reproducibility and security are general subjects not tied to a specific format like PDF,
but as a first step we undertake a discussion specific for PDF files. This shall be extended step
by step.

26pdflatex and lualatex differ a bit in text. Seems similar to TEX Live.
27The same as in TEX Live.
28The same as for TEX Live.
29Similar as in TEX Live.
30Explanation with more detail than for TEX Live.
31The same as for TEX Live.
32The same as for TEX Live.

6

Reproducible builds are important for tests and for global cooperation. For PDF files besides
visible data also so-called metadata must be reproduced. Security is mainly privacy here. Also,
besides visible data also metadata shall not expose private data.

To display metadata, we use exiftool and pdfinfo.

4.1 The tool chains
Although xelatex always produces a XDV file ias an intermediate step, when creating a PDF file
this is eliminated. In contrast, with the option -no-pdf one can eliminate creation of the PDF
file and the XDV is not erased. For conversion, of the XDV file to PDF, the option -output-
driver=CMD is used which defaults to the command xdvipdfmx. Besides direct creation of a PDF
file, we consider creation via XDV file using xdvipdfmx. The XDV format is an extension and in
fact a variant of the DVI format.

For the other engines in contrast, the option -output-format=dvi/pdf determines the output
format which is PDF by default and there is no intermediate format for PDF. When creating
DVI files instead, these files can be converted into PDF by explicitly invoking something like
dvipdfmx, dvipdfmx or xdvipdfmx. In my current distribution TEX Live, the programs dvipdfm,
dvipdfmx and xdvipdfmx are all binary identical.

Nevertheless, they turn out to yield different results. One reason found below is, that the
name with which the program is invoked goes into the result. It is likely that this is the only
reason.

As a consequence of the workflow of xelatex, \ifpdf provided by package iftex always
enters the \else branch for xelatex.

Although this section focuses on PDF format, of course the intermediate format DVI/XDV
must be considered by need. The visual appearance is roughly the same, so visual reproducibility
of DVI/XDV is almost equivalent with visual reproducibility of PDF, but for metadata one has
to distinguish cases where the LATEX engine already creates metadata and writes it into \special
commands in a DVI/XDV file, whereas the PDF creator just includes this data from DVI/XDV
from cases where it is the PDF creator which creates metadata, like creation time.

4.2 Dates, times and time zones
Clearly, creation times affect reproducibility quite directly, because usually the date is given in
the head page of a document, but it goes also into metadata both directly and indirectly.

Before discussing aspects of time in the context of PDF creation from LATEX,

4.2.1 Date/time formats and time zones

This section introduces date/time formats, time zones and conversions between.
The description is started with epoch time which is the most important although not well

human-readable. It is the number of seconds from start of computer time history, which is agreed
to be

1970-01-01T00:00:00Z

i.e. the point in time, where in timezone UTC (represented by the Z, zero deviation from UTC) it
was start of year 1970, i.e. date 1970--01--01 and midnight, time 00:00:00. It is called epoch
time, although nothing special happened like Christs birth. Zero and negative time is allowed.
Note, that this does not depend on a time zone, but as human-readable time formats depend on
the time zone, conversion from and to epoch time must take time zone into account.

7

In fact, the above date is an example of a representation given by [ISO19]. More general, the
timezone is either Z representing UTC or some deviation from UTC for example with two digits
for hours and two digits for minutes. For example the same date as above in time zone two hours
earlier (more east) than UTC writes

1970-01-01T02:00:00+0200

Among the standard environment variables in POSIX operating systems is also TZ specifying
the time zone as described in https://www.gnu.org/software/libc/manual/html_node/Sta
ndard-Environment.html. We only use the forms based on UTC like so:

TZ=UTC, TZ=UTC-02

CAUTION: The number is understood as to be added to given time to get UTC, so east of UTC
has negative numbers. This is the sign opposite to the representation given by ISO 8601 which is
the offset to be added to UTC to get time given.

In Unix and similar operating systems, conversion can be done with date. If a time is given
with option -d, this is converted into the format given by the format specifier which starts with
+. If no time is given, the current time is assumed.

date
yields the current date and time with timezone in current locale representation. The locale
is given by the environment variable LANG.

date +%FT%T%z
yields the current date and time in form given by ISO 8601 with date given by %F followed
by literal T followed by time %T and finally the time zone given by %z.

date -d 'Apr 29 2024' +%s
converts human-readable date into epoch time specified by format %s (seconds since
1970–01–01, i.e. epoch time). Caution: Many formats are recognized, but time zones are
silently ignored. For example,

date -d '2024-06-20T12:03:00+03' +%s

silently ignores the timezone +03 and uses the current one which is UTC+02, because me the
author is located in Germany. This can be seen, because the result does not depend on the
time zone; you can use +02 or Z signifying UTC or drop: the result is always 1718877780.
To set the time zone, the variable TZ must be used like so:

TZ=UTC-02 date -d '2024-06-20T12:03:00' +%s

Note the sign difference between ISO 8601 representation and TZ. Since UTC+02 is the
timezone of the author, the result is still 1718877780, but if using TZ=UTC-03, which is one
hour east, it is one hour, i.e. 3600 seconds less which results in epoch time 1718874180.

date -d '@1718877780' +%FT%T%z
converts from epoch time (signified by leading @) into local time zone resulting in

2024-06-20T12:03:00+0200

8

https://www.gnu.org/software/libc/manual/html_node/Standard-Environment.html
https://www.gnu.org/software/libc/manual/html_node/Standard-Environment.html

Since the time zone of the author is currently GTM+02, or with minutes GTM+0200 this is
what the resulting time string ends with.

TZ=UTC-03 date -d '@1718877780' +%FT%T%z
converts from epoch time (signified by leading @) into time zone given by TZ resulting in

2024-06-20T13:03:00+0300

Compared with the result above, the time which is one hour later and this is reflected by
the according time zone. Note again the sign contrary to the value of TZ.

Finally, [ISO20], Section 7.9.4 describes the encoding of date/time with timezone in metadata
of PDF files. It is quite similar to the format given by ISO 8601–1. Transformation is by dropping
separators -- and :, prefixing D: and inserting ' separating hours and minutes in time zone. The
above date/time writes as follows:

D:20240620130300+03'00

4.2.2 Date, time and time zones in PDF files created from LATEX files

When creating documents from LATEX, date and time information go into at least in the following
aspects: in

• LATEX macros displaying time and date in the document like the built-in \today, \date and
\time accessible with prefixed \the, and also \DTMnow provided by package datetime2

• metadata of PDF documents like CreationDate and ModDate

• file properties like creation time and modification time.

There are several environment variables affecting treatment of these aspects. First we analyze
behavior without them.

Let us start with the last aspect: For Linux, the command stat yields both creation time
and modification time of a file xxx.pdf:

stat -c +%w xxx.pdf is the time of file birth, i.e. creation time

stat -c +%y xxx.pdf is the modification time. This is the same as given by ls -l.

Both times comprise the date are endowed with time zone information and are given in human-
readable form, although not precisely conform with ISO 8601–1. The command stat assumes
the local time zone by default, but is sensitive to TZ:

TZ=UTC stat -c +%w xxx.pdf

displays the result in UTC time zone. The according pieces of information in epoch time are
accessed with option in capital letters, i.e. +%W and +%Y, respectively.

As one would expect, the modification time is the time when the engine finished writing. The
time of file birth is really when the file comes into existence, e.g. for the first time or after having
been deleted.

The first surprise with metadata CreationDate and ModDate is, that in fact it is not only
date but comprises time and timezone as well, much the same as the according file properties.
The form in which they are given in the PDF files is described in Section 4.2.1. This is essentially
accessible via

9

%pdfsource ={no l a t e x main f i l e }
}
%\ usepackage { date t ime2}% not wi th dv i

\ExplSyntaxOn%

\NewExpandableDocumentCommand{\ pr in t t ime }{}
{
\ int_compare :nT { \c_sys_hour_in t < 10 } { 0 }
\ int_eva l : n { \c_sys_hour_in t }
:% chk tex 26
\ int_compare :nT { \c_sys_minute_in t < 10 } { 0 }

Listing 1: Definition of \printdate

pdfinfo -rawdates xxx.pdf

The data is considered raw because it is displayed as is, i.e. as stored in the PDF file. It is close
to ISO 8824–1. Dates are also accessible in format specified in ISO 8601–1 via

pdfinfo -isodates xxx.pdf

The second surprise is, that the creation date and modification date given by metadata do
not coincide with the according file properties.

First, xelatex is special in that by default, it provides CreationDate only, whereas lualatex
and pdflatex provide both. The command \DocumentMetadata forces xelatex to display both
times. This is not really important, because the two times seem to coincide if both are given. The
idea behind creation time is, that the LATEX engine creates a new file even when overwriting an old
one. The time when starting to overwrite seems to be the CreationDate. Why the ModDate is
the same and not the later time when writing is finished, well…the reader may find an explanation
him/herself. An idea is that this is related to incremental updates described in [ISO20], Section
7.5.6: Instead of creating a PDF anew if a modification occurs, it is advised to just append a
description of the difference. This update does not affect creation date but only modification
date. LATEX engines no not support incremental updates and so compilation creates just a new
PDF document.

Both, xelatex and pdflatex represent CreationDate and ModDate with the local time zone
which can be overwritten by TZ, and so does lualatex by default. In addition, lualatex has
an option --utc both for TEX Live and for MiKTeX described in Sections 2 and 3 which forces
metadata given in UTC zone, overwriting internal timezone but also the value of TZ if provided.

Finally, we have to consider the visible date and time displayed by commands like \date or
\time, to be and \DTMnow provided by package datetime2. Unfortunately, \time, the number of
minutes since midnight is not well human-readable. Thus, for experiments we use \printdate
defined in Listing 1 which is based on \time.

Time and date in the visible document, e.g. by \DTMnow behave exactly as the date and time
given by the metadata, except that xelatex does not display seconds in visible document and
does not make the time zone visible, although metadata show that both pieces of information are
available.

Note that as lualatex represents metadata in UTC time if invoked with option --utc, the
same is true for visible date and time. The time zone is made explicit. Note that the variable TZ

10

is treated as for metadata: Goes into representation, except for lualatex invoked with option
--utc.

The environment variable SOURCE_DATE_EPOCH defined in https://reproducible-builds.
org/docs/source-date-epoch/, is set with epoch time. It was introduced to obtain reproducible
builds in a general context can also be used in TEX systems. Although SOURCE_DATE_EPOCH
defines the build time in a sense, it is specified, that the given epoch time is exactly what is
written into the metadata. It affects each LATEX engine but in slightly different way.

For pdflatex, the main description is in [THHB24], Chapter 2. An important detail is, that
the time zone written into metadata is UTC. Even if the timezone is given explicitly by TZ,
it is ignored. The time given by SOURCE_DATE_EPOCH affects metadata but also \DTMnow. To
affect also primitives like \time, one has to add FORCE_SOURCE_DATE=1 in addition. Essentially,
xelatex behaves the same as described inxelatex: [RHB24], Sections 8.3 and 8.5.

In contrast to this, as described in [HHHS24], Section 4.4, lualatex does honor the en-
vironment variable SOURCE_DATE_EPOCH but not FORCE_SOURCE_DATE. Instead, it acts as if
FORCE_SOURCE_DATE=1 is set implicitly: Besides metadata, also visible date representations
honor SOURCE_DATE_EPOCH, be it \time or \DTMnow. In contrast to pdflatex and xelatex,
which automatically display epoch time given by SOURCE_DATE_EPOCH in UTC, lualatex does
so only if invoked with option --utc. Else lualatex honors the current time zone which may
also be specified by TZ.

At time of this writing there seems to be a bug in lualatex leading to the wrong time zone
when the time is start of a full hour.

Last thing: LATEX engines creating DVI/XDV and going on with xdvipdvmx. Of course, visible
data are as with direct compilation and also file times are straightforward. To get these data
right, LATEX engine must be invoked with the system variables as for direct creation of PDF files.

The only issue are meta-data. Here also they seem to be stored in the intermedate dvi/xdv
files, and just passed to PDF by xdvipdvmx, except date and time information. These are added
by xdvipdfmx.

So, SOURCE_DATE_EPOCH and TZ but not FORCE_SOURCE_DATE must be considered when invok-
ing xdvipdfmx and that like. If none of these are given, the current time with local time zone
are used. If SOURCE_DATE_EPOCH is not given, then TZ is honored, but if SOURCE_DATE_EPOCH is
given, then creation time is in UTC time zone, ignoring TZ. So xdvipdfmx behaves very much
like xelatex in direct compilation of PDF, which is clear because it is by defaults xelatex’s
PDF backend. This behavior of xdvipdfmx coins time metadata even if used in conjunction
with lualatex, which is some argument to configure direction computation of PDF files with
lualatex in a way that it fits the other engines.

4.3 Metadata in the PDF trailer and info dictionary
The root for metadata in PDF file is the trailer dictionary. As described in [ISO20], Section 7.5.5,
it contains references to several other dictionaries, the size and the trailer identifier with key
ID. Among the references is that with key Info to the document information dictionary (DID)
described in [ISO20], Section 14.3.3. The most important entries are CreationDate and ModDate;
the rest is deprecated with PDF version 2.0. Still these entries are relevant for PDF versions
1.x. For all entries in the document information dictionary including CreationDate and ModDate
there are replacements in the metadata streams described in [ISO20], Section 14.3.2. To be more
precise it is the XMP metadata, which is an XML format, described in [ISO12]. Frequently, the
replacements allow a set of locales. The LATEX engine writes this if in the header of the TEX file

\DocumentMetadata{...}

11

https://reproducible-builds.org/docs/source-date-epoch/
https://reproducible-builds.org/docs/source-date-epoch/

is specified, even if the argument list is empty, because this signifies default xmp=true. The result
can be read through

pdfinfo -meta xxx.pdf

The keys of the document information dictionary (DID) and their replacements as XMP are
given in Table 4. Note that the keys for XMP have a prefixed namespace separated by :. The
table does not list all XMP keys specified in [ISO12], but only those which are observed as created
by a LATEX engine. Observe that the XMP keys with namespace pdf are not specified in [ISO12].

DID XMP remark
Title dc:title same
Author dc:creator same
Subject dc:description
Keywords dc:subject not pdf:Keywords as specified
— dc:type
— dc:language
— dc:date duplicate of CreationDate?
— dc:format application/pdf
— dc:source the LATEX main file
Creator xmp:CreatorTool should be creator of tex source…
Producer pdf:Producer
— pdf:PDFVersion
CreationDate xmp:CreateDate
ModDate xmp:ModifyDate same as CreationDate?
— xmp:MetadataDate same as CreationDate?
Trapped pdf:Trapped
— xmpMM:DocumentID
— xmpMM:InstanceID

Table 4: Keys of DID and replacement by XMP

So far, the only piece of data degrading security is dc:source. One may think of eliminating
it using package hyperxmp, described in [Pak23]. This is deferred because it collides with
\DocumentMetadata.

Besides a reference to the document information dictionary, the trailer dictionary also contains
the trailer identifier described in [ISO20], Section 7.5.5. It indicates that not writing the trailer
identifier or corrupting it is no good idea, e.g. because it is needed for encryption or for uniquely
identifying the document.

Details are given in [ISO20], Section 14.4. First, the identifier consists of two hashes, the first
of which depends on the newly created but unmodified document. The notion behind is that
of incremental updates described in [ISO20], Section 7.5.6. The first hash shall depend on the
content of the file at creation time and on CreateDate. The second hash in contrast shall depend
on content of the file after last incremental update and on time of last update, i.e. on ModDate.

In the LATEX world incremental update is not supported so that CreateDate and ModDate
coincide and so do the contents. As a consequence, the two hashes of the trailer identifier coincide
as well. The last section of [ISO20], Section 14.4 seems to indicate, that the location of the PDF
file may go into the trailer ID, which would make it less reproducible.

12

4.4 Reproducibility
The first observation is, that invocation of xelatex latexEngines produces different PDF output
for each run. Likewise, xelatex -no-pdf latexEngines produces different XDV output for each
run. As turns out later, this is because the creation time goes into the result.

Thus, it is plausible that, to obtain reproducibility, we invoke the engine as

SOURCE_DATE_EPOCH=0 FORCE_SOURCE_DATE=1 xelatex latexEngines
SOURCE_DATE_EPOCH=0 FORCE_SOURCE_DATE=1 xelatex -no-pdf latexEngines

The second result is, that creating the PDF file and the XDV file that way is reproducible.
It turns out, that this compression setting does not refer to the XDV file, which seems always

compressed, but solely to the PDF file. The PDF files differ mainly in the time stamp but also in
some hashes which may depend on the time stamp.

Now let us experiment with xdvipdfmx. Even if we start with a reproducible XDV file, the
PDF file created by xdvipdfmx changes with each invocation. This changes when also xdvipdfmx
is invoked with fixed time.

SOURCE_DATE_EPOCH=0 FORCE_SOURCE_DATE=1 xdvipdfmx latexEngines

As mentioned above, in the distribution TEX Live current at time of this writing, the programs
dvipdfm, dvipdfmx and xdvipdfmx are all binary identical. Nevertheless, they seem to lead to
different output. Possibly, the invocation name goes into the result. To find out, we do not allow
compression. It turns out that the names go into the result as the producer.

Using the package hyperref, one can overwrite a lot of metadata. Details are found in the
manual [RO22], Section 5.10. In particular, the producer can be set unknown. As a result, the
trailer identifier is the only remaining difference. Seemingly, the producer goes into this whether
displayed or not. The trailer identifier cannot be overwritten by hyperref, but only in a way
specific for xelatex:

\special{pdf:trailerid [
<00112233445566778899aabbccddeeff>
<00112233445566778899aabbccddeeff>

]}

makes even the XDV to PDF converter transparent.
In [RO22], Section 5.10, also the creator is found, which is LaTeX with hyperref independent

of the LATEX engine. This shall be overwritten if there are security concerns.
As long as the tool chain and settings remain constant, invocation of LATEX engine xelatex

and backend XDV to PDF converter specifying SOURCE_DATE_EPOCH=0 FORCE_SOURCE_DATE=1
suffices to guarantee reproducibility. This setting refers to start of computer time history, although
nothing special happened like Christs birth, creation date 1970--01--01 00:00:00Z and if the
file exist, this is the modification date. From the point of view of reproducibility, there is ok, but
it is not the truth. Thus, it makes sense to overwrite this with the string unknown. If the file is
overwritten, the same considerations apply to the modification date. Both can be overwritten
with package hyperref.

One question remains: how does hyperref manipulate the metadata and in a second step,
can we do this directly without using hyperref.

Now let us switch to the other two LATEX engines. Both write the banner information indicating
above all the type of engine and the version. As checked by switching compression of, xelatex
does not write any banner information. Again, as long as the engine does not change nor changes

13

its version or its distribution, the banner does not corrupt reproducibility. On the other hand,
removing it would stabilize and generalize reproducibility somewhat: stabilize because the banner
contains version information and thus breaks reproducibility at version change, and it breaks
reproducibility when changing the engine of course. Also, privacy or security is an argument in
favor of eliminating the banner. The package hyperref offers no way to change the banner; this
can be done only in a machine specific way. The details are described in Section 4.6 below.

The same is true for the trailer identifier. Strictly speaking it need not be suppressed for
reproducibility, but to make the result independent of the DVI to PDF converter as is explained
in the context of xelatex above.

Creating DVI files with SOURCE_DATE_EPOCH=0 FORCE_SOURCE_DATE=1 yields reproducible
results. As expected, these settings are also necessary for translating DVI into PDF.

4.5 Suppressing and overwriting meta info in an engine specific way
For lualatex [HHHS24], Section 3.2.2 describes the variable suppressoptionalinfo which speci-
fies bitwise which pieces of metadata to be suppressed. Among the PTEX entries, PTEX.FullBanner
is unique as it refers to the top level document: it is the first line of output in the log file. For sake
of privacy this shall be suppresed. The other PTEX entries, PTEX.FileName, PTEX.PageNumber
and PTEX.InfoDict refer to embedded PDF files. The InfoDict has entries Producer, Creator,
CreationDate, ModDate and Trapped and must be suppressed as well.

Also, Creator and Producer shall be suppressed. Note that suppression of Creator is
impossible when using package hyperref, because it writes LaTeX with hyperref setting itself
as creator. To be safe that this piece of information is not exposed, this meta info must be
overwritten later. Metadata Trapped is suppressed, although there are reasons both for suppression
and for leaving as is.

As described elsewhere, neither CreationDate, ModDate or ID shall be suppressed.
As described in [THHB24], Section 4.2.3 and 4.2.4, pdflatex can suppress only PTEX data

which must be done, and CreationDate, ModDate which must not be suppressed. Finally, xelatex
cannot suppress any metadata.

Meta info may be suppressed but also overwritten. For lualatex [HHHS24], Section 3.2.2
shows how to overwrite the trailer ID. In contrast, pdflatex has many options to overwrite
metadata collected in [THHB24], Section 4.2, among those also the trailer ID. Neither of these
are needed. Finally, there is no official documentation on xelatex for overwriting metadata but
internet sources show a way to overwrite the trailer ID:

\special{pdf:trailerid [
<00112233445566778899aabbccddeeff>
<00112233445566778899aabbccddeeff>

]}

4.6 Security and Stability of Reproducibility
Security is here privacy. Hiding information makes attacks more difficult. Stability of repro-
ducibility consists in stability as regards new versions of the same tools in the tool chain and the
aspect of change of a tool or some other aspect of environment.

One aspect is the time zone. As indicated in Section 4.2.2, reproducible PDF files must have
CreateDate and ModDate both in UTC time zone. This supports both privacy, as the true time
zone of the build facility is not accessible and stability of reproducibility as a change of location of

14

the build facility or change of summer/winter time may not corrupt reproducibility. This feature
supports international cooperation.

From Section 4.4 come the recommendation to set the following pieces of information to
unknown., This is done with hyperref package ****

Creator This is uniformly LaTeX with hyperref as long as hyperref is loaded, except for
beamer class (which loads hyperref implicitly) for which it is LaTeX with Beamer class.
If hyperref is not loaded, the creator is TEX except for xelatex which shows engine and
creation date. Thus, it is advisable in general for security but without hyperref for sake of
stability of reproducibility.

Producer This is xdvipdfmx with version for creating DVIs and in general for xelatex. For
creating PDF with pdflatex or with lualatex, it is something like pdfTeX-1.40.25 or
LuaTeX-1.18.0. This shall be hidden for sake of security and stability of reproducibility.

PTEX.Fullbanner is not written by xelatex, but for both lualatex and pdflatex. It can be
suppressed in an engine specific way, but not through hyperref. The banner exposes tools,
versions and distributions. Thus, it shall not be exposed for sake of security and stability of
reproducibility.

All these pieces of information and a bit more are suppressed by including headerSuppress-
MetaPDF.tex. Observe that to that end the package hyperref is used whenever possible because
this technique is not specific for the LATEX engine. Only banner and trailer identifier are suppressed
in an engine specific way.

Besides code, headerSuppressMetaPDF.tex provides additional info in the comments, but for
details specific for the individual engines see [HHHS24], Section 14.1.8 for lualatex, and [THHB24],
Section 4.2 for pdflatex. Seemingly, xelatex is quite different from the other engines and tends
to write fewer pieces of information. It uses an external XDV to PDF converter, xdvipdfmx by
default. By placing \special commands in the TEX file, the user can pass information to the
XDV to PDF converter also controlling meta info to some extent. Some details are given in the
manual for xdvipdfmx, [Tea20], Section 4.1.1.

4.7 Miscellaneous
4.7.1 The command \DocumentMetadata

One of the subjects is the command \DocumentMetadata described in [MF23], Section 2. We
used it as

\DocumentMetadata{uncompress}

to avoid compression of the created PDF file, mainly for debugging, but it is significant even
with empty argument list, e.g. it forces xelatex displaying ModDate in addition to CreationDate.
Another effect, which can be considered a bug is, that overwriting of meta info by command
\hypersetup offered by package hyperref does not work anymore. This applies e.g. to dates
but also to creator and producer. This bug does not corrupt reproducibility but security.

Another effect comes into the game because \DocumentMetadata has default value xmp=true
which means that XMP metadata described in [ISO12] is written. This is an XML format and
can be retrieved through

pdfinfo -meta xxx.pdf

15

https://www.simuline.eu/LatexMavenPlugin/fromTex/headerSuppressMetaPDF.tex
https://www.simuline.eu/LatexMavenPlugin/fromTex/headerSuppressMetaPDF.tex

Seemingly, this does not corrupt reproducibility but may be considered to degrade security.
Partially, it is a surrogate for the document information dictionary as described in Section 4.3.

Readers who refuse using \DocumentMetadata and use use xelatex may take refuge to
switching off compression via

\special{dvipdfmx:config z 0}

4.7.2 Manipulating the trailer identifier

5 To be clarified
Note that xelatex works as the other engines for PDF, whereas it has XDV instead of DVI as
alternative format. Thus, the format DVI is ignored. See the manual.

6 References
[HHHS24] H. Hagen, H. Henkel, T. Hoekwater, and L. Scarso. LuaTEX Reference Manual, 2

2024. Refers to version 1.18. A copy is within the documentation of this software.

[ISO12] International Organization for Standardization (ISO). Extensible metadata platform
(XMP) specification Part 1: Data model, serialization and core properties, 2012.
withdrawn; superseeded 2019.

[ISO19] International Organization for Standardization (ISO). Date and time — Representa-
tions for information interchange Part 1: Basic rules, 1 edition, 2 2019.

[ISO20] ISO. Document management – Portable document format – Part 2: PDF 2.0, 2
edition, 12 2020.

[KB23] editor K. Berry. The TeX Live Guide—2023, 2 2023. A copy is within the documen-
tation of this software.

[MF23] F. Mittelbach and U. Fischer. The documentmetadata-support code, 3 2023. A copy is
within the documentation of this software, in fact two documents, documentmetadata-
support-doc.pdf and documentmetadata-support-code.pdf which also comprises the
implementation.

[Pak23] Scott Pakin. The hyperxmp package, 9 2023.

[RHB24] W. Robertson, K. Hosny, and K. Berry. The XETEX reference guide, 3 2024. Refers
to version 0.999996. A copy is within the documentation of this software.

[RO22] Sebastian Rahtz and Heiko Oberdiek. Hypertext marks in LATEX: a manual for
hyperref, 2 2022.

[Sch22] C. Schenk. MiKTeX Manual. https://docs.miktex.org/manual/, 2022.

[Tea20] The Dvipdfmx Project Team. Dvipdfmx User’s Manual, 6 2020. Version 0.12.4b.

[THHB24] Han The Thanh, H. Hagen, H. Henkel, and K. Berry. The pdfTEX user manual, 2
2024. For pdftex 1.40.26. A copy is within the documentation of this software.

16

https://docs.miktex.org/manual/

	List of Tables
	List of Listings
	Introduction
	The options for TeX Live
	The options for MiKTeX
	Reproducibility and security for PDF documents created
	The tool chains
	Dates, times and time zones
	Date/time formats and time zones
	Date, time and time zones in PDF files created from LaTeX files

	Metadata in the PDF trailer and info dictionary
	Reproducibility
	Suppressing and overwriting meta info in an engine specific way
	Security and Stability of Reproducibility
	Miscellaneous
	The command \DocumentMetadata
	Manipulating the trailer identifier

	To be clarified
	References

